
The 37th Canadian Conference on Artificial Intelligence

Want To Choose Your Own Adventure? Then First Make a Plan.

Nisha Simon†,*, Christian Muise†,
† Queen’s University, Canada

*nisha.simon@queensu.ca

Abstract
Our research demonstrates that Large Language Models (LLMs) can successfully be

used for automated story generation provided that they are first given a valid input plan
that has been generated by an automated planner. A well-known issue with LLMs is that
while they can generate coherent outputs over short spans of text, they lose coherence
when they are asked to produce longer text narratives. In this study, we combine the
fields of Automated Planning and Text Generation to show how text-based interactive
‘Choose Your Own Adventure’ (CYOA) stories can be created using LLMs in conjunction
with Fully Observable Non-Deterministic (FOND) based Automated Planning.
Keywords: Large Language Models, Automated Storytelling, Automated Text Gen-
eration, Automated Planning, Interactive Narratives.

This article is © 2024 by author(s) as listed above. The article is licensed under a Creative Commons
Attribution (CC BY 4.0) International license (https://creativecommons.org/licenses/by/4.0/legalcode),
except where otherwise indicated with respect to particular material included in the article. The article
should be attributed to the author(s) identified above.

1. Introduction

‘Choose-Your-Own-Adventure’ (CYOA) stories are interactive narratives where the reader
assumes a fictional persona and then chooses various paths in order to reach the ending of a
story [1]. If the reader makes the right choices, they are rewarded with a ‘happy’ ending, such
as winning a mountain of treasure; if not, they could end up severely disappointed, such
as finding themselves trapped in a large dark pit. ‘Choose-Your-Own-Adventure’ stories
can, therefore, be thought of as a representation of an agent proceeding through a non-
deterministic environment in order to achieve a certain goal. In our study, the agent is the
story itself, and the non-determinism is driven by the reader. The non-deterministic nature
means that an agent’s actions may have an impact on the world that is not known until the
time when the action is executed. The ‘Fully Observable’ designation means that all parts of
the environment are known by the agent (i.e. no parts of the environment are hidden from
the agent), and only the final impact of each action is uncertain. Thus, CYOA stories can
be created using LLMs in conjunction with Fully Observable Non-Deterministic (FOND)
based Automated Planning.

In our running example, the hero of the tale is a brave adventurer named Jack, who is
navigating the intricacies of an ancient castle. The user takes on the persona of Jack and
makes decisions about what action to take at each stage of the story. As shown in Figure 1,
if the user chooses a ‘good ’ path, Jack escapes from the castle and is rewarded with treasure
and glory. If the user makes the ‘wrong ’ choices, Jack could meet with an untimely demise.
Note that the ‘good ’ and ‘wrong ’ choices are based only on the perspective of the main
character. The valid plan that the automated planner generates is simply concerned with
reaching the goal state from the starting state, within the confines of the given environment,
and therefore it makes no distinction as to whether the ‘game over ’ state is reached in a
‘positive’ or ‘negative’ way for the main character.

Our main contributions are that we demonstrate how Fully Observable Non-Deterministic
(FOND) Automated Planning can be used to drive LLMs to generate text that can be used
in CYOA stories.

Background: Automated Planning problems are represented using the Planning Domain
Definition Language (PDDL) [2]. Planning problems use two files written in PDDL format:
the Domain file and the Problem file. The Domain file contains the requirements, types,



Figure 1. Example of various possible paths through a Choose Your Own Adventure
(CYOA) story

predicates and actions, while the Problem file holds the objects, the initial state and the
goal. A particular domain could have multiple problems associated with it. The domain
and problem files are fed into an automated planner, and the planner then produces a plan
(typically represented by a sequence of actions or steps) that lead to the goal state.

We represent a classical planning problem P as a tuple denoted by ⟨F,A, I,G⟩. F is the
set of fluents or items that can be either TRUE or FALSE in the domain. A is the set of
actions or what the agent is allowed to do in the given environment. I is the initial state.
G is the goal the agent is trying to achieve or the set of fluents that must be TRUE at the
end of the planning process. An action a in the set of actions A has three characteristics:
PRE(a): the preconditions of action a or the set of fluents that must hold to execute action
a, DEL(a): the set of fluents that are removed from the current state when action a is
executed, or the ‘delete effects’ of action a, and ADD(a): the set of fluents that are added
to the current state when action a is executed, or the ‘add effects’ of action a. If PRE(a)
⊆ s, the agent can take action a. We progress from a state s to state s′ using action a by
removing every fluent that a deletes, and then adding every fluent that a adds. That is to
say Progress (s,a) = (s \ DEL(a)) ∪ ADD(a). The goal is achieved when G ⊆ s. In FOND
planning, we extend classical planning to allow actions to have more than one outcome, thus
potentially leading to more than one successor state at execution time. The keyword ‘oneof ’
indicates multiple possible effects. By including non-determinism, the plan now takes the
form of a decision tree instead of a sequence of actions [2].

2. Related Work

The issue of LLMs losing coherence over longer text generations has been problematic
even for the largest and most powerful LLMs [3]. Yang, Klein, Peng, and Tian state that ‘It
is nontrivial to maintain overarching coherence or even basic relevance to an initial premise
or plan.’. GPT-based systems like ‘Stories by AI ’ can create simple narratives. However,
the authors conclude that “if you don’t steer the story, the AI tends to meander around in
circles” and “without steering, the AI suggestions tend to become circuitous and repetitive”
which means that there always needs to be a human in the loop [4].

Neurosymbolic methods have previously been used to provide a logical reasoning system
to guide LLMs to overcome this issue [5]. Directed graphs and branching story trees have
been used to direct players through interactive text-based games, as demonstrated by Yu and



Figure 2. High-level System Architecture Diagram. A Domain file and one (or more)
Problem file(s) in PDDL are fed into an automated planner in order to produce a valid
plan. The outputs of the plan are in the form of text files as well as a directed graph. The
outputs of the plan are then fed into an LLM to generate natural language storylines,
which are then used to guide a player through an interactive text-based adventure.

Riedl [6]. Kelly, Calderwood, Wardrip-Fruin, and Mateas developed a system to create plans
from Natural Language text but conceded that the complexity of the PDDL in terms of the
number of predicates and parameters used, as well as the complexity of the generated stories,
is low [7]. Their system also only creates a valid plan 34% of the time. Indeed as noted by
Valmeekam, Olmo, Sreedharan, and Kambhampati, LLMs ‘even in simple common-sense
planning domains, LLMs seem to display subpar performance’ [8]. Planning and long-range
reasoning, therefore, are not the LLM’s forte [9]. Clark and Smith et al. have created a
system that provides the user with pairwise suggestions for story writing, but their work is
designed more for the evaluation of the actual model [10].

Simon and Muise have previously used classical planning with LLMs for story generation
in a FOD (Fully Observable Deterministic) format [11]. We extend this approach by using
FOND planning to generate the storylines. While FOD planning provides a set story with
no choices for the reader to make, FOND stories allow the reader to create their own custom
adventure each time.

3. Methodology

The overall architecture of our system is shown in Figure 2. The plan representations,
i.e. the Domain and Problem files, were manually created by the authors. However, it is
also possible to build domains from previously created stories. The Domain and Problem
files for the initial story were manually modelled and written in PDDL and then fed in as
inputs to an automated FOND planner (in this case, an extension to the PRP planner) [12].
The PRP planner extension is an off-the-shelf, state-of-the-art planner that was used as a
component of our system. The particular planner is not a contribution of our paper since
other FOND planners could also be used instead of PRP. A small snippet of sample PDDL
code from the Domain file can be seen in Figure 3. The FOND planner produces output in
the form of multiple text files and a directed graph such as the one in Figure 4 that shows
the various paths that lead from the starting state to the end (goal) state, or the ‘game
over ’ state.

After computing the plan, we feed the plan outputs to the LLM and then obtain the
corresponding next Natural Language line, one at a time, as follows: First, we include any
background or real-world contextual information as the initial or ‘hidden’ (i.e. not always



4

Figure 3. PDDL code snippet from the Domain file.

directly related to the specific actions in the story) input prompts (also called story-agnostic
prompts) to the LLM. The manually generated story-agnostic prompts provide background
or common-sense information that guides the rest of the output and can be common to
multiple stories. The story-agnostic prompts are also useful for style purposes, such as how
the story is written. The LLM requires at least two (or more) initial patterns of ‘action’ and
‘story ’ prompts in order to recognize and generate the text. The ‘pattern’ is the combination
of the story-agnostic prompts, as well as the initial inputs. Second, we took one line at a
time, in sequence, of the solved plan. Third, we appended this line to the hidden prompt for
the LLM input. Fourth, we let the LLM generate one line of output (ignoring any further
lines that were generated). Fifth, taking this one line of generated output, we added it to
the end of the existing input prompt and used the result as the new input prompt.

The planner outputs are consolidated into a single text file and then combined with
hidden prompts to be fed into an LLM (specifically gpt2-x1 [13]) via the Hugging Face
API 1 to generate user options for the interactive story. The hyperparameters used were
as follows: Only one return sequence was requested at a time for each input line. The
maximum number of new tokens was set to 25 to allow for fairly descriptive storylines while
still staying faithful to the inputs. The temperature of the sampling operation, which can
range from 0 to 100, was set to 0.7, where 100 is close to uniform probability and 0 means
take the highest score. Sampling was turned on, and Top-k was set so that only the top
10 tokens returned were used to generate the new text. The specific LLM that is used is
not the main point of the study, as the Hugging Face API provides access to a large variety
of LLMs, and the LLM can be considered merely a ‘black box’ component of the overall
system that can be switched out at will. We do not directly use fine-tuning of the LLM.
Instead, we allow the LLM to predict the outputs based on input prompts that are given to

1https://huggingface.co/models



Figure 4. Example of a directed graph that is produced by the automated planner as
part of the output

it at run-time. The output of the overall task is therefore the complete story that is created
based on the choices made by the user.

The user is not privy to the details of the generated plan i.e., the user is unaware of
which paths are ‘good ’ and which paths are ‘wrong ’ paths within the story. Instead, the
user ‘plays’ the text-based game by selecting their choices for each stage of the story through
an interactive Google Colab notebook whose logic is based on the directed graph and on
the LLM outputs, plus some additional manually written text. The user’s input is merely
an instruction to the system to follow a specific edge on the directed graph. The entire plan
representation itself already exists in totality and is not updated based on the user choices.

4. Results

We find as a proof of concept that the LLM can successfully generate text story options
at each stage of the narrative for the user to progress logically from the starting state to the
end or ‘game over ’ state. For example, from the valid plan file, the action ‘die-hero-guard
dungeon jack axe’ is correctly translated by the LLM to ‘Jack is attacked by a guard at
the entrance to the dungeon.’ and ‘defeat-monster cellar jack axe’ is translated correctly to
‘Jack defeats the monster in the cellar.’, while even the very simple action line, ‘game-over
jack ’, is converted to ‘Jack’s adventure has ended.’. Examples of gameplay can be seen in
Figures 5 and 6.

Figure 5. Example sequence to guide a player through an interactive text-based adven-
ture. The main character, Jack, needs to select a weapon in order to proceed and to
defend himself from the dangers that lurk in the castle.

5. Conclusion

We demonstrate how an LLM can be used to guide the user through a CYOA story while
maintaining coherence through a longer narrative. Preliminary results show that the LLM



Figure 6. Example sequence to guide a player through an interactive text-based adven-
ture. Which door should Jack open? The decision is left to the player.

can successfully translate the output of the valid plan into natural language sentences that
are then used to provide options to the player of the interactive text-based adventure game.
By combining the outputs of the valid plan with the LLM’s text generation capability, we
provide a logical skeleton of the story, and we can thus maintain coherence over the entire
span of the story that is told by the dynamic narrative of the game. Our work is, therefore, a
key step in using neuro-symbolic techniques and planning in a novel way for story generation.

References

[1] M. O. Riedl and V. Bulitko. “Interactive narrative: An intelligent systems approach”. In: Ai
Magazine 34.1 (2013), pp. 67–67.

[2] P. Haslum, N. Lipovetzky, D. Magazzeni, and C. Muise. An Introduction to the Planning
Domain Definition Language. Morgan & Claypool, 2019. isbn: 9781627058759. url: http:
//www.morganclaypoolpublishers.com/catalog_Orig/product_info.php?products_id=
1384.

[3] K. Yang, D. Klein, N. Peng, and Y. Tian. “Doc: Improving long story coherence with detailed
outline control”. In: arXiv preprint arXiv:2212.10077 (2022).

[4] C. Kallio, S. Zhou, and A. Kurenkov. “Stories by AI”. In: Stories by AI (2022). url: https:
//storiesby.ai/about.

[5] L. Martin. “Neurosymbolic Automated Story Generation”. PhD thesis. Georgia Institute of
Technology, 2021.

[6] H. Yu and M. O. Riedl. “A sequential recommendation approach for interactive personalized
story generation.” In: AAMAS. Vol. 12. 2012, pp. 71–78.

[7] J. Kelly, A. Calderwood, N. Wardrip-Fruin, and M. Mateas. “There and back again: extracting
formal domains for controllable neurosymbolic story authoring”. In: Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment. Vol. 19. 1. 2023,
pp. 64–74.

[8] K. Valmeekam, A. Olmo, S. Sreedharan, and S. Kambhampati. “Large Language Models Still
Can’t Plan (A Benchmark for LLMs on Planning and Reasoning about Change)”. In: arXiv
preprint arXiv:2206.10498 (2022).

[9] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone. “Llm+ p: Empowering
large language models with optimal planning proficiency”. In: arXiv preprint arXiv:2304.11477
(2023).

[10] E. Clark and N. A. Smith. “Choose your own adventure: Paired suggestions in collaborative
writing for evaluating story generation models”. In: Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2021, pp. 3566–3575.

[11] N. Simon and C. Muise. “TattleTale: Storytelling with Planning and Large Language Models”.
In: ICAPS Workshop on Scheduling and Planning Applications. 2022.

[12] C. Muise, S. McIlraith, and C. Beck. “Improved non-deterministic planning by exploiting
state relevance”. In: Proceedings of the International Conference on Automated Planning and
Scheduling. Vol. 22. 2012, pp. 172–180.

[13] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. “Language models are
unsupervised multitask learners”. In: OpenAI blog 1.8 (2019), p. 9.

http://www.morganclaypoolpublishers.com/catalog_Orig/product_info.php?products_id=1384
http://www.morganclaypoolpublishers.com/catalog_Orig/product_info.php?products_id=1384
http://www.morganclaypoolpublishers.com/catalog_Orig/product_info.php?products_id=1384
https://storiesby.ai/about
https://storiesby.ai/about

	1. Introduction
	2. Related Work
	3. Methodology
	4. Results
	5. Conclusion
	References
	References


