
Automatic Term Extraction in Technical Domain using
Part-of-Speech and Common-Word Features

Nisha Ingrid Simon
Dalhousie University
Halifax, Nova Scotia

nsimon@dal.ca

Vlado Kešelj
Dalhousie University

Faculty of Computer Science
Halifax, Nova Scotia

vlado@cs.dal.ca

ABSTRACT

Extracting key terms from technical documents allows us
to write effective documentation that is specific and clear,
with minimum ambiguity and confusion caused by nearly
synonymous but different terms. For instance, in order to
avoid confusion, the same object should not be referred to by
two different names (e.g. “hydraulic oil filter”). In the modern
world of commerce, clear terminology is the hallmark of
successful RFPs (Requests for Proposal) and is therefore a key
to the growth of competitive organizations. While Automatic
Term Extraction (ATE) is a well-developed area of study, its
applications in the technical domain have been sparse and
constrained to certain narrow areas such as the biomedical
research domain. We present a method for Automatic Term
Extraction (ATE) for the technical domain based on the use
of part-of-speech features and common words information.
The method is evaluated on a C programming language
reference manual as well as a manual of aircraft maintenance
guidelines, and has shown comparable or better results to
the reported state of the art results.

CCS CONCEPTS

• Information systems → Data mining; Ontologies;

KEYWORDS

Terminology extraction, POS tagging, Natural language pro-
cessing, Text mining

ACM Reference Format:
Nisha Ingrid Simon and Vlado Kešelj. 2018. Automatic Term Ex-
traction in Technical Domain using Part-of-Speech and Common-

Word Features . In DocEng ’18: ACM Symposium on Document
Engineering 2018, August 28–31, 2018, Halifax, NS, Canada.

ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3209280.3229100

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

DocEng’18, August 28–31, 2018, Halifax, Canada

© 2018 Copyright held by the owner/author(s). Publication rights
licensed to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5769-2/18/08. . . $15.00
https://doi.org/10.1145/3209280.3229100

1 INTRODUCTION

Automated Term Extraction (ATE) from technical docu-
ments is an important problem since extracting key terms
from technical documents allows us to write high-quality
documentation that is specific and clear, with minimum am-
biguity. For instance, in order to avoid confusion, the same
object should not be referred to by two different names. In
the world of business, clear terminology is the hallmark of
successful RFPs. ATE in general is an important area of study
because it has applications in IR (Information Retrieval) such
as text summarization, text categorization, opinion mining
and document indexing.

In creative writing, authors make their text more vivid by
choosing different synonymous words for the same concept.
However, this would cause confusion in technical writing. For
example, if a technician is following assembly instructions,
referring to the same part with different names could be
confusing and would increase the chance of error in assembly.
Thus, a more uniform and standardized terminology is highly
regarded in the technical domain, and a tool that can detect
terminology and help a writer to create a better document
would be beneficial. A similar service would also be useful
to reviewers and assessors of technical proposals and similar
documents.

The vocabulary of technical terms is constantly growing,
especially in specialized areas such as computer science, engi-
neering and medicine [9]. With the pace of knowledge acquisi-
tion that is required to maintain currency in modern technical
fields, it is helpful for a user to have access to a method of
quickly extracting part of an index that is comprised of the
key terms of a document.

Much work has been done on ATE, however the state of
the art performance is still low. Major factors that affect ATE
performance measures are the length of documents, a lack of
structural consistency (for instance, lack of a defined index
or abstract), topic changes, and the presence of uncorrelated
topics in the same text [11].

1.1 Objective

Our hypothesis is that Automatic Term Extraction (ATE) can
be successfully performed in the technical domain to extract
keyphrases using part-of-speech information with additional
information about commonality of some words. We build and
evaluate a system for automated term extraction based on
part-of-speech and common-word feature information, and
evaluate it on the C programming language reference manual

https://doi.org/10.1145/3209280.3229100
https://doi.org/10.1145/3209280.3229100
https://doi.org/10.1145/3209280.3229100
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3209280.3229100&domain=pdf&date_stamp=2018-08-28

DocEng’18, August 28–31, 2018, Halifax, Canada N.Simon and V. Kešelj

[18]. As a gold standard we used the manually prepared in-
dexes of terms found at the end of this document. In addition
we apply our methods on a manual of aircraft maintenance
guidelines [12], and compare our results to that obtained
from the C programming language reference manual. Results
are then compared to those obtained by TBXTools statistical
[20].

1.2 Contributions

The novelty of this paper lies in the domain to which ATE is
applied. While ATE has been used in extremely specific areas
such as the biological domain [2], Archaeology or Chemistry
[4], or in general areas such as newspapers [5], to the best
of our knowledge, ATE has not been used earlier in the
technical domain on documents such as C programming
reference manuals or aircraft maintenance guidelines. Also
most of the earlier research focuses on extracting a limited set
of the most important keywords by rank, while our research
is aimed at generating all valid index terms from a document.

2 RELATED WORK

There has been much work on Automatic Term Extrac-
tion based on document features and statistical approaches
[16, 21]. Automatic keyphrase extraction was defined by
Turney [22] as “the automatic selection of important topical
phrases from within the body of the document”. A human-
generated keyphrase was considered to be the same as a
machine-generated keyphrase if they had the same sequence
of stems. A method to create a back-of-the-book index for
Stargazers text using lexical classes was described by Da
Sylva [6]. This process involved noun phrase extraction (in-
cluding lemmatization and part-of-speech tagging), text seg-
mentation, candidate term weighting and index compilation.
Other related work includes material by Ferrari et al. [7].
TBXTools [20] was presented by Oliver and Vàzquez as a
tool that was built in Python to extract keyterms from con-
trolled corpora. There is also an instance where ATE has
been used on only the abstracts of scientific articles, as op-
posed to the entire documents [14]. Tf-Idf has been used
to extract keyterms [10]. An overview of the advances in
Natural Language Processing was presented by Hirschberg
and Manning [13] where it is observed that “simple methods
using words, part-of-speech (POS) sequences. . . or simple
templates can often achieve notable results when trained on
large quantities of data”. Methods for ATE and comparison
of various approaches were discussed in Astrakhansev et al.
[1, 2]

3 METHODOLOGY

ATE can be considered a supervised learning classification
task [8] where a candidate phrase is either a keyphrase or
it is not. A certain aspect of ATE can be seen as a search
for collocations [19]. One way of identifying collocations and
keyterms is by using part-of-speech tags. A method of se-
lecting the most frequent bigrams and passing them through
a part of speech filter of “likely phrase” sequence patterns

Figure 1: Methodology

was proposed by Justeson [15]. For example, if some likely
part-of-speech patterns for selecting terms are adjective-noun
or noun-noun, the filter would search for patterns JJ NN or
NN NN in the text.

Our overall methodology is shown in Figure 1. We used
a C programming language reference manual as our first
dataset. The index of each C programming reference docu-
ment was used as the gold standard to measure how well the
system performed. Data pre-processing forms an important
part of the process. After individual words are tagged, POS
sequences are extracted. POS tagging is then performed in
order to obtain candidate terms. A list of stop words (com-
mon words i.e. domain-specific stop words) and calculation
of the frequency of word occurrence are then used to find
likely keywords.

Our second data set was a manual of aircraft maintenance
guidelines [12]. As a gold standard, the glossary of the docu-
ment was used to validate candidate terms. A major difference
between this dataset and the C data set was that the former
contained a large number of acronyms. The NLTK toolkit
version 2.0.4 (Natural Language Toolkit) described by Bird
et al. [3] was used to process the data. TBXTools statistical
[20] was then used to compare the results of our system to
candidate terms generated by TBXTools .

3.1 Data Pre-processing

The HTML or PDF format of the file was converted to a plain
text format. The text was converted completely to lowercase
to remove duplicates that were based solely on case differ-
ences. Non-alphanumeric characters and “words” that were
composed solely of numbers were excluded, since the index
of each document contained keyterms that were composed
solely of letters. A Python script was run on the Index file to
remove the section names, to avoid inadvertently repeating

Automatic Term Extraction in Technical Domain DocEng’18, August 28–31, 2018, Halifax, Canada

the keywords that were found based strictly on POS tag
information. Extraneous material such as acknowledgments
and example code snippets were removed from the document
since otherwise, a search for POS tags of the form <NN>
<NN> would find invalid terms.

To ensure consistent matching between terms as they ap-
peared in the text of the document and terms in the index,
index terms which used commas to alter the order of words
were pre-processed by having their commas removed, and
the order of words “flipped” so as to make them grammati-
cally correct. For instance, “array elements, accessing” was
converted to “accessing array elements”.

3.2 POS Tagging

Part of speech tagging was performed using the default Max-
imum Entropy Penn Treebank POS tagger of the NLTK
toolkit. POS tagging uses POS tag sequences as a “within
collection” (as opposed to external) syntactic feature, in order
to identify candidate keyphrases.

Sequences of POS tags in the index were used to find the
most appropriate expressions to use as filters on the body of
the C reference manual document.

While the frequency of nouns appeared prominent among
the index terms e.g. arithmetic operators, operator precedence,
verbs came a close second e.g. accessing array elements, ini-
tializing arrays.

3.3 Candidate Detection

Candidate words were selected based on POS patterns. The
goal of this step was to avoid “incorrect” keyphrases while
using pruning to create the smallest possible number of can-
didates [11]. This pruning is necessary because reducing the
number of candidates increases the value of the precision
measure.

3.4 Stop words and Common words

The text was compared to a list of common words and stop-
words and any terms from the text that also appeared in
the list of stopwords were excluded. Frantzi et al. [9] used a
method of selecting high frequency words from a sample of
their corpus as stop words. A large number of words in the
document were in fact stopwords.

Five different types of these stopwords and common words
were used. First, we used a basic list of stopwords provided
by NLTK, enhanced by words of occurrence frequency of less
than three from the text. Second, a list of stopwords from
the Brown corpus editorial category was used. Next a set of
common words that were prevalent in the technical domain
was manually created by inspection. In addition a list of
words that could be considered stopwords but were actually
valid key terms was also created. This Operators list was
made of common words that could be considered stopwords
in a generic domain, but were in fact specialized terms and
therefore valid keywords in the technical domain. Also the
least frequent words in a particular document were used as
another stop word list. Occurrence frequencies of three and

Table 1: Experimental Results

Exp. Precision Recall F-Measure

ATE C data 0.1969 0.3596 0.2548
TBXTools C data 0.0668 0.2905 0.1086
ATE Aircraft 0.0275 0.8485 0.0533
TBXTools Aircraft 0.0069 0.2675 0.0134

ten were used as thresholds for the least frequent words list.
Stop words were extracted after candidate terms were found,
so as not to prematurely exclude valid key terms.

4 EXPERIMENTS

The observed performance is shown in Table 1. “C data”
indicates the C language document, “Aircraft” indicates the
aircraft maintenance guidelines manual, and “TBXTools” de-
scribes the values when the TBXTools software [20] was used
on the C language document and the aircraft maintenance
guidelines manual. “ATE” indicates our system.

5 DISCUSSION

Evaluation metrics for ATE were laid out by Kim at al. [17]
and Hasan et al. [11]. This approach involved mapping the
keyphrases in the “gold standard” document (i.e. the index
file) to the key phrases that were output by the system, using
an exact match. The mapping was then scored using precision,
recall and F-measure values. The “gold standard” is a pre-
built list of reference terms that provides “reproducibility of
results, tunability of parameters, and comparison between
different methods on one dataset” according to Astrakhansev
[2]. Using the Odds ratio test we obtained a score of greater
than one, in favor of our system when compared to TBXTools
statistical.

All keyphrases that were generated were used in our cal-
culation of performance measures, unlike other research ex-
periments that placed a cutoff on the number of generated
keyphrases [8, 22].

The use of more relaxed POS sequences e.g. <N.> <N.>*

resulted in more candidates being identified, but only a small
number of these candidates were actual index terms. Using
more restrictive POS sequences e.g. <NN> <NN> provided
better matches between the text and index terms. Precision
and recall were improved by removing code snippets and
pre-processing the data.

The default POS tagger in the NLTK software was lacking
in accuracy when it came to certain terms. Also, there was
a discrepancy between tags in the text file and in the index
file due to ambiguity of word usage in various sentences as
opposed to the index file. It should be noted that the text file
consisted of whole paragraphs while the index file comprised
of index terms that were listed one term per line.

State of the art performance in ATE is still low. Hasan et
al. [11] explain that state of the art values for Precision in
general vary between 0.27 and 0.35, Recall varies between
0.28 and 0.66, while F-measure falls between 0.27 and 0.45.

DocEng’18, August 28–31, 2018, Halifax, Canada N.Simon and V. Kešelj

Figure 2: Performance Measures Comparison

For performance measures on scientific papers in particu-
lar (SemEval 2010), which corresponds most closely to our
dataset, the corresponding values are 0.27, 0.28 and 0.28
respectively. Our results are comparable to the previously
mentioned state of the art performance values as indicated
by Figure 2.

Variant terms were included in our candidate detection
as otherwise, as Bougouin et al state, “variations in the
extracted keyphrases that might be judged as correct cannot
be taken into account” [4].

As expected, precision varies inversely with recall. This
trade-off becomes inevitable as returning more candidates im-
proves recall but lowers precision, while pruning the number
of candidate terms improves precision while lowering recall.

6 CONCLUSION

We have evaluated and demonstrated a method for the auto-
matic creation of a list of the most relevant keyterms from
examples of technical documents. The results compare fa-
vorably to the state of the art, although the state of the art
performance itself is still relatively low in terms of precision
and recall. While most indexers tend to focus mostly on noun
phrases, we have endeavored to include verb phrases as well,
since it has been noted that index terms are more complex
than mere sequences of nouns [16]. In our calculation of per-
formance measures, we used all the keyphrases that were
generated, unlike experiments that placed a cutoff on the
number of generated keyphrases.

Future work will include the addition of external features
e.g. data from Wikipedia article titles or other sources, in or-
der to provide more domain-specific background information.
An alternate POS tagger will be used to find POS sequences,
and the results will be compared with that of the default
POS tagger provided by NLTK, in order to determine if this
new tagger increases the accuracy of POS tagging.

REFERENCES
[1] Nikita Astrakhantsev. 2016. ATR4S: Toolkit with State-of-the-

Art Automatic Terms Recognition methods in Scala. Language

Resources and Evaluation (2016), 1–20.
[2] NA Astrakhantsev, Denis G Fedorenko, and D Yu Turdakov. 2015.

Methods for Automatic Term Recognition in Domain-Specific Text
Collections: A Survey. Programming and Computer Software 41,
6 (2015), 336–349.

[3] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Lan-
guage Processing with Python: Analyzing Text with the Natural
Language Toolkit. O’Reilly Media, Inc.

[4] Adrien Bougouin, Sabine Barreaux, Laurent Romary, Florian
Boudin, and Béatrice Daille. 2016. Termith-eval: a French
Standard-based Resource for Keyphrase Extraction Evaluation.
In Language Resources and Evaluation Conference (LREC).

[5] Damien Cram and Béatrice Daille. 2016. Termsuite: Terminology
Extraction with Term Variant Detection. ACL 2016 (2016), 13.

[6] Lyne Da Sylva and Frédéric Doll. 2005. A Document Browsing
Tool: Using Lexical Classes to Convey Information. In Confer-
ence of the Canadian Society for Computational Studies of
Intelligence. Springer, 307–318.

[7] Alessio Ferrari, Felice dell’Orletta, Giorgio Oronzo Spagnolo, and
Stefania Gnesi. 2014. Measuring and Improving the Completeness
of Natural Language Requirements. In International Working
Conference on Requirements Engineering: Foundation for Soft-
ware Quality. Springer, 23–38.

[8] Eibe Frank, Gordon W Paynter, Ian H Witten, Carl Gutwin,
and Craig G Nevill-Manning. 1999. Domain-specific Keyphrase
Extraction. In 16th International Joint Conference on Artificial
Intelligence (IJCAI 99), Vol. 2. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 668–673.

[9] Katerina Frantzi, Sophia Ananiadou, and Hideki Mima. 2000.
Automatic Recognition of Multi-word terms:. the C-value/NC-
value method. International Journal on Digital Libraries 3, 2
(2000), 115–130.

[10] Kazi Saidul Hasan and Vincent Ng. 2010. Conundrums in Unsuper-
vised Keyphrase Extraction: Making Sense of the State-of-the-Art.
In Proceedings of the 23rd International Conference on Com-
putational Linguistics: Posters. Association for Computational
Linguistics, 365–373.

[11] Kazi Saidul Hasan and Vincent Ng. 2014. Automatic Keyphrase
Extraction: A Survey of the State of the Art. In ACL (1). 1262–
1273.

[12] Lindley R. Higgins. 1990. Maintenance Engineering Handbook.
McGraw-Hill.

[13] Julia Hirschberg and Christopher D Manning. 2015. Advances in
Natural Language Processing. Science 349, 6245 (2015), 261–266.

[14] Anette Hulth. 2003. Improved Automatic Keyword Extraction
given more Linguistic Knowledge. In Proceedings of the 2003 con-
ference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 216–223.

[15] John S Justeson and Slava M Katz. 1995. Technical Terminology:
some Linguistic Properties and an Algorithm for Identification in
text. Natural Language Engineering 1, 01 (1995), 9–27.

[16] Su Nam Kim and Min-Yen Kan. 2009. Re-examining Automatic
Keyphrase Extraction Approaches in Scientific Articles. In Pro-
ceedings of the Workshop on Multiword Expressions: Identifica-
tion, Interpretation, Disambiguation and Applications. Associa-
tion for Computational Linguistics, 9–16.

[17] Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Timothy Bald-
win. 2010. Semeval-2010 task 5: Automatic Keyphrase Extraction
from Scientific Articles. In Proceedings of the 5th International
Workshop on Semantic Evaluation. Association for Computa-
tional Linguistics, 21–26.

[18] Sandra Loosemore, Richard M. Stallman, Roland McGrath, An-
drew Oram, and Ulrich Drepper. 1989. The GNU C Library
Reference Manual. GNU.

[19] Christopher D Manning, Hinrich Schütze, et al. 1999. Foundations
of Statistical Natural Language Processing. Vol. 999. MIT Press.

[20] Antoni Oliver and Mercè Vàzquez. 2015. TBXTools: a Free,
Fast and Flexible Tool for Automatic Terminology Rxtraction. In
Proceedings of the International Conference Recent Advances
in Natural Language Processing. 473–479.

[21] Sifatullah Siddiqi and Aditi Sharan. 2015. Keyword and Keyphrase
Extraction Techniques: a Literature Review. International Jour-
nal of Computer Applications 109, 2 (2015).

[22] Peter D Turney. 2000. Learning Algorithms for Keyphrase Ex-
traction. Information retrieval 2, 4 (2000), 303–336.

	Abstract
	1 Introduction
	1.1 Objective
	1.2 Contributions

	2 Related Work
	3 Methodology
	3.1 Data Pre-processing
	3.2 POS Tagging
	3.3 Candidate Detection
	3.4 Stop words and Common words

	4 Experiments
	5 Discussion
	6 Conclusion
	References

